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Introduction

• So far we’ve looked at “generative models”
• Language models, Naive Bayes

• But there is now much use of conditional or discriminative 
probabilistic models in NLP, Speech, IR (and ML generally)

• Because:
• They give high accuracy performance
• They make it easy to incorporate lots of linguistically important features
• They allow automatic building of language independent, retargetable NLP 

modules
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Joint vs. Conditional Models

• We have some data {(d, c)} of paired observations 
d and hidden classes c.

• Joint (generative) models place probabilities over 
both observed data and the hidden stuff (gene-
rate the observed data from hidden stuff): 
• All the classic StatNLP models:

• n-gram models, Naive Bayes classifiers, hidden 
Markov models, probabilistic context-free grammars, 
IBM machine translation alignment models

P(c,d)
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Joint vs. Conditional Models

• Discriminative (conditional) models take the data 
as given, and put a probability over hidden 
structure given the data:

• Logistic regression, conditional loglinear or maximum 
entropy models, conditional random fields

• Also, SVMs, (averaged) perceptron, etc. are 
discriminative classifiers (but not directly probabilistic)

P(c|d)
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Bayes Net/Graphical Models

• Bayes net diagrams draw circles for random variables, and lines for direct 
dependencies

• Some variables are observed; some are hidden
• Each node is a little classifier (conditional probability table) based on 

incoming arcs c

d1 d 2 d 3

Naive Bayes

c

d1 d2 d3

Generative
Logistic Regression

Discriminative
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Conditional vs. Joint Likelihood

• A joint model gives probabilities P(d,c) and tries to maximize this 
joint likelihood.
• It turns out to be trivial to choose weights: just relative frequencies.

• A conditional model gives probabilities P(c|d). It takes the data 
as given and models only the conditional probability of the class.
• We seek to maximize conditional likelihood.
• Harder to do (as we’ll see…)
• More closely related to classification error.



Christopher Manning Conditional models work well: 
Word Sense Disambiguation

• Even with exactly the same 
features, changing from 
joint to conditional 
estimation increases 
performance

• That is, we use the same 
smoothing, and the same 
word-class features, we just 
change the numbers 
(parameters) 

Training Set

Objective Accuracy

Joint Like. 86.8

Cond. Like. 98.5

Test Set

Objective Accuracy

Joint Like. 73.6

Cond. Like. 76.1

(Klein and Manning 2002, using Senseval-1 Data)
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Features

• In these slides and most maxent work: features f are elementary 
pieces of evidence that link aspects of what we observe d with a 
category c that we want to predict

• A feature is a function with a bounded real value

발표자
프레젠테이션 노트
Write: : f: C  D → ℝ 
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Example features

• f1(c, d) ≡ [c = LOCATION ∧ w-1 = “in” ∧ isCapitalized(w)]
• f2(c, d) ≡ [c = LOCATION ∧ hasAccentedLatinChar(w)]
• f3(c, d) ≡ [c = DRUG ∧ ends(w, “c”)]

• Models will assign to each feature a weight:
• A positive weight votes that this configuration is likely correct
• A negative weight votes that this configuration is likely incorrect

LOCATION
in Québec

PERSON
saw Sue

DRUG
taking Zantac

LOCATION
in Arcadia

발표자
프레젠테이션 노트
Purple is left 2
Orange/red is second
Green is 3rd
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Feature Expectations

• We will crucially make use of two expectations
• actual or predicted counts of a feature firing:

• Empirical count (expectation) of a feature:

• Model expectation of a feature:
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Features

• In NLP uses, usually a feature specifies
1. an indicator function – a yes/no boolean matching function – of 

properties of the input and
2. a particular class

fi(c, d) ≡ [Φ(d) ∧ c = cj] [Value is 0 or 1]

• Each feature picks out a data subset and suggests a label for it

발표자
프레젠테이션 노트
Say that “every feature we present in this class is like this.”
We will say that Φ(d) is a feature of the data d, when, for each cj, the conjunction Φ(d)  c = cj is a feature of the data-class pair (c, d)
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Feature-Based Models
• The decision about a data point is based only on the 

features active at that point.

BUSINESS: Stocks 
hit a yearly low …

Data

Features
{…, stocks, hit, a, 
yearly, low, …}

Label: BUSINESS

Text 
Categorization

… to restructure 
bank:MONEY debt.

Data

Features
{…, w-1=restructure, 
w+1=debt, L=12, …}

Label: MONEY

Word-Sense 
Disambiguation

DT      JJ       NN …
The previous fall …

Data

Features
{w=fall, t-1=JJ w-

1=previous}

Label: NN

POS Tagging
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Example: Text Categorization

(Zhang and Oles 2001)
• Features are presence of each word in a document and the document class 

(they do feature selection to use reliable indicator words)
• Tests on classic Reuters data set (and others)

• Naïve Bayes: 77.0% F1

• Linear regression: 86.0%
• Logistic regression: 86.4%
• Support vector machine: 86.5%

• Paper emphasizes the importance of regularization (smoothing) for successful 
use of discriminative methods (not used in much early NLP/IR work)
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Other Maxent Classifier Examples

• You can use a maxent classifier whenever you want to assign data points to 
one of a number of classes:
• Sentence boundary detection (Mikheev 2000)

• Is a period end of sentence or abbreviation?
• Sentiment analysis (Pang and Lee 2002)

• Word unigrams, bigrams, POS counts, …
• PP attachment (Ratnaparkhi 1998)

• Attach to verb or noun? Features of head noun, preposition, etc.
• Parsing decisions in  general (Ratnaparkhi 1997; Johnson et al. 1999, etc.)
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Feature-Based Linear Classifiers

• Linear classifiers at classification time:
• Linear function from feature sets {fi} to classes {c}.
• Assign a weight λi to each feature fi.

• We consider each class for an observed datum d
• For a pair (c,d), features vote with their weights: 

• vote(c) = Σλifi(c,d)

• Choose the class c which maximizes Σλifi(c,d)

LOCATION
in Québec

DRUG
in Québec

PERSON
in Québec

발표자
프레젠테이션 노트
1.8    f1(c, d)  [c = LOCATION  w-1 = “in”  isCapitalized(w)]   Purple
-0.6   f2(c, d)  [c = LOCATION  hasAccentedLatinChar(w)]    Orange
0.3   f3(c, d)  [c = DRUG  ends(w, “c”)]     Green
Purple and orange match LOCATION, green matches DRUG, nothing matches PERSON
Maximizer = LOCATION
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Feature-Based Linear Classifiers

There are many ways to chose weights for features

• Perceptron: find a currently misclassified example, and 
nudge weights in the direction of its correct classification

• Margin-based methods (Support Vector Machines)
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Feature-Based Linear Classifiers
• Exponential (log-linear, maxent, logistic, Gibbs) models:

• Make a probabilistic model from the linear combination Σλifi(c,d)

• P(LOCATION|in Québec) = e1.8e–0.6/(e1.8e–0.6 + e0.3 + e0) = 0.586

• P(DRUG|in Québec) = e0.3 /(e1.8e–0.6 + e0.3 + e0) = 0.238

• P(PERSON|in Québec) = e0 /(e1.8e–0.6 + e0.3 + e0) = 0.176

• The weights are the parameters of the probability 
model, combined via a “soft max” function

Makes votes positive

Normalizes votes

발표자
프레젠테이션 노트

P(LOCATION|in Québec) = e1.8e–0.6/(e1.8e–0.6 + e0.3 + e0) = 0.586
P(DRUG|in Québec) = e0.3 /(e1.8e–0.6 + e0.3 + e0) = 0.238
P(PERSON|in Québec) = e0 /(e1.8e–0.6 + e0.3 + e0) = 0.176
The weights are the parameters of the probability model, combined via a “soft max” function
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Feature-Based Linear Classifiers

• Exponential (log-linear, maxent, logistic, Gibbs) models:
• Given this model form, we will choose parameters {λi} 

that maximize the conditional likelihood of the data 
according to this model.

• We construct not only classifications, but probability 
distributions over classifications.
• There are other (good!) ways of discriminating classes –

SVMs, boosting, even perceptrons – but these methods are 
not as trivial to interpret as distributions over classes.
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Aside: logistic regression

• Maxent models in NLP are essentially the same as multiclass 
logistic regression models in statistics (or machine learning)
• If you haven’t seen these before, don’t worry, this presentation is self-

contained!
• If you have seen these before you might think about:

• The parameterization is slightly different in a way that is advantageous 
for NLP-style models with tons of sparse features (but statistically inelegant)

• The key role of feature functions in NLP and in this presentation
• The features are more general, with f also being a function of the class –

when might this be useful?
27
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Quiz Question

• Assuming exactly the same set up (3 class decision: LOCATION, 
PERSON, or DRUG; 3 features as before, maxent), what are:
• P(PERSON | by Goéric) = 

• P(LOCATION | by Goéric) = 

• P(DRUG | by Goéric)       = 

• 1.8    f1(c, d) ≡ [c = LOCATION ∧ w-1 = “in” ∧ isCapitalized(w)]
• -0.6   f2(c, d) ≡ [c = LOCATION ∧ hasAccentedLatinChar(w)]
• 0.3    f3(c, d) ≡ [c = DRUG ∧ ends(w, “c”)]

PERSON
by Goéric

LOCATION
by Goéric

DRUG
by Goéric
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Building a Maxent Model

• We define features (indicator functions) over data points
• Features represent sets of data points which are distinctive enough to 

deserve model parameters.
• Words, but also “word contains number”, “word ends with ing”, etc.

• We will simply encode each Φ feature as a unique String
• A datum will give rise to a set of Strings: the active Φ features
• Each feature fi(c, d) ≡ [Φ(d) ∧ c = cj] gets a real number weight

• We concentrate on Φ features but the math uses i indices of fi

발표자
프레젠테이션 노트
While a more structured representation could be used …
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Building a Maxent Model

• Features are often added during model development to target errors
• Often, the easiest thing to think of are features that mark bad combinations

• Then, for any given feature weights, we want to be able to calculate:
• Data conditional likelihood
• Derivative of the likelihood wrt each feature weight

• Uses expectations of each feature according to the model

• We can then find the optimum feature weights (discussed later).

발표자
프레젠테이션 노트
Data conditional likelihood [we did this just now]
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Text classification: Asia or Europe

NB FACTORS:
• P(A) = P(E) = 
• P(M|A) =  
• P(M|E) = 

Europe Asia

Class

X1=M

NB Model PREDICTIONS:
• P(A,M) = 
• P(E,M) = 
• P(A|M) = 
• P(E|M) = 

Training Data
Monaco 
Monaco

Monaco Monaco 
Hong 
Kong

Hong 
Kong 
Monaco

Monaco Hong 
Kong

Hong 
Kong

Monaco 
Monaco

발표자
프레젠테이션 노트
½
¼
¾
½*3/4
½*1/4
¾
¼ 
Document icons from free icon set: http://www.icojoy.com/articles/44/
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Text classification: Asia or Europe

NB FACTORS:
• P(A) = P(E) =
• P(H|A) = P(K|A) = 
• P(H|E) = PK|E) = 

Europe Asia

Class

X1=H X2=K

NB Model PREDICTIONS:
• P(A,H,K) = 
• P(E,H,K) = 
• P(A|H,K) = 
• P(E|H,K) = 

Training Data
Monaco 
Monaco

Monaco Monaco 
Hong 
Kong

Hong 
Kong 
Monaco

Monaco Hong 
Kong

Hong 
Kong

Monaco 
Monaco

발표자
프레젠테이션 노트
½
3/8
1/8
½*3/8*3/8
½*1/8*1/8
9/10
1/10
Document icons from free icon set: http://www.icojoy.com/articles/44/
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Text classification: Asia or Europe

NB FACTORS:
• P(A) = P(E) =
• P(M|A) = 
• P(M|E) =
• P(H|A) = P(K|A) =  
• P(H|E) = PK|E) = 

Europe Asia

Class

H K

NB Model PREDICTIONS:
• P(A,H,K,M) = 
• P(E,H,K,M) = 
• P(A|H,K,M) = 
• P(E|H,K,M) = 

Training Data

M

Monaco 
Monaco

Monaco Monaco 
Hong 
Kong

Hong 
Kong 
Monaco

Monaco Hong 
Kong

Hong 
Kong

Monaco 
Monaco

발표자
프레젠테이션 노트
½
¼
¾
3/8
1/8
½*3/8*3/8*1/4
½*1/8*1/8*3/4
3/4
1/4
Document icons from free icon set: http://www.icojoy.com/articles/44/
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Naive Bayes vs. Maxent Models

• Naive Bayes models multi-count correlated evidence
• Each feature is multiplied in, even when you have multiple features telling 

you the same thing

• Maximum Entropy models (pretty much) solve this problem
• As we will see, this is done by weighting features so that model 

expectations match the observed (empirical) expectations

발표자
프레젠테이션 노트
NLP relevance: we often have overlapping features….
What’s an example?
Xanax
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Exponential Model Likelihood

• Maximum (Conditional) Likelihood Models :
• Given a model form, choose values of parameters to maximize the 

(conditional) likelihood of the data.
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The Likelihood Value

• The (log) conditional likelihood of iid data (C,D) 
according to maxent model is a function of the 
data and the parameters λ:

• If there aren’t many values of c, it’s easy to 
calculate:
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The Likelihood Value

• We can separate this into two components:

• The derivative is the difference between the 
derivatives of each component
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The Derivative I: Numerator

Derivative of the numerator is: the empirical count(fi, c)
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The Derivative II: Denominator

= predicted count(fi, λ)

발표자
프레젠테이션 노트
2nd line: Bring sigma outside partial derivative, then chain rule: derivative of outside log is 1/x times inside times derivative of inside
3rd line: Chain rule again: derivative of exp is exp times derivative of inside.
4th line: Move sigma_c’ out and regroup.
5th line: partial derivative of RHS term and rewrite as definition.
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The Derivative III

• The optimum parameters are the ones for which each feature’s 
predicted expectation equals its empirical expectation.  The optimum 
distribution is:

• Always unique (but parameters may not be unique)
• Always exists (if feature counts are from actual data).

• These models are also called maximum entropy models because we 
find the model having maximum entropy and satisfying the 
constraints:
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Finding the optimal parameters

• We want to choose parameters λ1, λ2, λ3, … that maximize the 
conditional log-likelihood of the training data

• To be able to do that, we’ve worked out how to calculate the 
function value and its partial derivatives (its gradient)
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A likelihood surface

발표자
프레젠테이션 노트
The loglikelihood function is convex and has a maximum
But hard if hundreds of thousands or millions of parameters.
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Finding the optimal parameters

• Use your favorite numerical optimization package….
• Commonly (and in our code), you minimize the negative of CLogLik

1. Gradient descent (GD); Stochastic gradient descent (SGD)
2. Iterative proportional fitting methods: Generalized Iterative Scaling 

(GIS) and Improved Iterative Scaling (IIS)
3. Conjugate gradient (CG), perhaps with preconditioning
4. Quasi-Newton methods – limited memory variable metric (LMVM) 

methods, in particular, L-BFGS

발표자
프레젠테이션 노트
Good large scale techniques
In practice, people have found that good general purpose numeric optimization packages/methods work better
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Maximum Entropy Models

• An equivalent approach:
• Lots of distributions out there, most of them very spiked, specific, overfit.
• We want a distribution which is uniform except in specific ways we 

require.
• Uniformity means high entropy – we can search for distributions which 

have properties we desire, but also have high entropy.

Ignorance is preferable to error and he is less remote from the truth who believes 
nothing than he who believes what is wrong – Thomas Jefferson (1781)
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(Maximum) Entropy

• Entropy: the uncertainty of a distribution.
• Quantifying uncertainty  (“surprise”):

• Event x
• Probability px

• “Surprise” log(1/px)

• Entropy: expected surprise (over p):
A coin-flip is most 
uncertain for a fair 
coin.

pHEADS

H

발표자
프레젠테이션 노트
Picture is mussed up. Maximum should be 1 for the coin flip!
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Maxent Examples I
• What do we want from a distribution?

• Minimize commitment = maximize entropy.
• Resemble some reference distribution (data).

• Solution: maximize entropy H, subject to feature-based constraints:

• Adding constraints (features):
• Lowers maximum entropy
• Raises maximum likelihood of data
• Brings the distribution further from uniform
• Brings the distribution closer to data

Unconstrained, 
max at 0.5

Constraint that 
pHEADS = 0.3
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Maxent Examples II
H(pH pT,) pH + pT = 1 pH = 0.3

- x log x

1/e
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Maxent Examples III
• Let’s say we have the following event space:

• … and the following empirical data:

• Maximize H:

• … want probabilities: E[NN,NNS,NNP,NNPS,VBZ,VBD] = 1

NN NNS NNP NNPS VBZ VBD

1/e 1/e 1/e 1/e 1/e 1/e

1/6 1/6 1/6 1/6 1/6 1/6

3 5 11 13 3 1
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Maxent Examples IV
• Too uniform!
• N* are more common than V*, so we add the feature fN = {NN, NNS, NNP, NNPS}, 

with E[fN] =32/36

• … and proper nouns are more frequent than common nouns, so we add fP = {NNP, 
NNPS}, with E[fP] =24/36

• … we could keep refining the models, e.g., by adding a feature to distinguish 
singular vs. plural nouns, or verb types.

8/36 8/36 8/36 8/36 2/36 2/36

4/36 4/36 12/36 12/36 2/36 2/36

NN NNS NNP NNPS VBZ VBD
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Convexity

Convex Non-Convex
Convexity guarantees a single, global maximum because any 
higher points are greedily reachable.
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Convexity II
• Constrained H(p) = – ∑ x log x is convex:

• – x log x is convex
• – ∑ x log x is convex (sum of convex 

functions is convex).
• The feasible region of constrained H is a 

linear subspace (which is convex)
• The constrained entropy surface is therefore 

convex.
• The maximum likelihood exponential 

model (dual) formulation is also convex.
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