
DRAFT

32 Chapter 4. N-grams

1996; Niesler and Woodland, 1996).
In general, using very large and rich contexts can result in very large language

models. Thus these models are often pruned, removing low-probably events. Prun-
ing is also essential for using language models on small platforms such as cellphones
(Stolcke, 1998).

Finally, there is a wide body of research on integrating sophisticated linguistic
structures into language modeling. Language models based on syntactic structure from
probabilistic parsers are described in Ch. 14. Language models based on the current
speech act in dialogue are described in Ch. 23.

4.10 ADVANCED: INFORMATION THEORY BACKGROUND

I got the horse right here
Frank Loesser, Guys and Dolls

We introduced perplexity in Sec. 4.4 as a way to evaluateN-gram models on a
test set. A betterN-gram model is one which assigns a higher probability to the test
data, and perplexity is a normalized version of the probability of the test set. Another
way to think about perplexity is based on the information-theoretic concept ofcross-
entropy. In order to give another intuition into perplexity as a metric, this section gives
a quick review of fundamental facts frominformation theory including the concept
of cross-entropy that underlies perplexity. The interested reader should consult a good
information theory textbook like Cover and Thomas (1991).

Perplexity is based on the information-theoretic notion ofcross-entropy, which
we will now work toward defining.Entropy is a measure of information, and is in-ENTROPY

valuable throughout speech and language processing. It canbe used as a metric for
how much information there is in a particular grammar, for how well a given grammar
matches a given language, for how predictive a givenN-gram grammar is about what
the next word could be. Given two grammars and a corpus, we canuse entropy to
tell us which grammar better matches the corpus. We can also use entropy to compare
how difficult two speech recognition tasks are, and also to measure how well a given
probabilistic grammar matches human grammars.

Computing entropy requires that we establish a random variable X that ranges
over whatever we are predicting (words, letters, parts of speech, the set of which we’ll
call χ), and that has a particular probability function, call itp(x). The entropy of this
random variableX is then

H(X) = −
∑

x∈χ
p(x) log2 p(x)(4.54)

The log can in principle be computed in any base; if we use log base 2, the
resulting value of entropy will be measured inbits.

The most intuitive way to define entropy for computer scientists is to think of
the entropy as a lower bound on the number of bits it would taketo encode a certain
decision or piece of information in the optimal coding scheme.

DRAFT

Section 4.10. Advanced: Information Theory Background 33

Cover and Thomas (1991) suggest the following example. Imagine that we want
to place a bet on a horse race but it is too far to go all the way toYonkers Racetrack,
and we’d like to send a short message to the bookie to tell him which horse to bet on.
Suppose there are eight horses in this particular race.

One way to encode this message is just to use the binary representation of the
horse’s number as the code; thus horse 1 would be001, horse 2010, horse 3011,
and so on, with horse 8 coded as000. If we spend the whole day betting, and each
horse is coded with 3 bits, on the average we would be sending 3bits per race.

Can we do better? Suppose that the spread is the actual distribution of the bets
placed, and that we represent it as the prior probability of each horse as follows:

Horse 1 1
2 Horse 5 1

64
Horse 2 1

4 Horse 6 1
64

Horse 3 1
8 Horse 7 1

64
Horse 4 1

16 Horse 8 1
64

The entropy of the random variableX that ranges over horses gives us a lower
bound on the number of bits, and is:

H(X) = −
i=8
∑

i=1

p(i) logp(i)

= − 1
2 log 1

2−
1
4 log 1

4−
1
8 log 1

8−
1
16 log 1

16−4(1
64 log 1

64)

= 2 bits(4.55)

A code that averages 2 bits per race can be built by using shortencodings for
more probable horses, and longer encodings for less probable horses. For example, we
could encode the most likely horse with the code0, and the remaining horses as10,
then110, 1110, 111100, 111101, 111110, and111111.

What if the horses are equally likely? We saw above that if we use an equal-
length binary code for the horse numbers, each horse took 3 bits to code, and so the
average was 3. Is the entropy the same? In this case each horsewould have a probability
of 1

8. The entropy of the choice of horses is then:

H(X) = −
i=8
∑

i=1

1
8

log
1
8

= − log
1
8

= 3 bits(4.56)

Until now we have been computing the entropy of a single variable. But most of
what we will use entropy for involvessequences; for a grammar, for example, we will
be computing the entropy of some sequence of wordsW = {w0,w1,w2, . . . ,wn}. One
way to do this is to have a variable that ranges over sequencesof words. For example
we can compute the entropy of a random variable that ranges over all finite sequences
of words of lengthn in some languageL as follows:

H(w1,w2, . . . ,wn) = −
∑

Wn
1 ∈L

p(Wn
1) logp(Wn

1)(4.57)

DRAFT

34 Chapter 4. N-grams

We could define theentropy rate (we could also think of this as theper-wordENTROPY RATE

entropy) as the entropy of this sequence divided by the number of words:

1
n

H(Wn
1) = −1

n

∑

Wn
1 ∈L

p(Wn
1) logp(Wn

1)(4.58)

But to measure the true entropy of a language, we need to consider sequences
of infinite length. If we think of a language as a stochastic processL that produces a
sequence of words, its entropy rateH(L) is defined as:

H(L) = − lim
n→∞

1
n

H(w1,w2, . . . ,wn)

= − lim
n→∞

1
n

∑

W∈L

p(w1, . . . ,wn) logp(w1, . . . ,wn)(4.59)

The Shannon-McMillan-Breiman theorem (Algoet and Cover, 1988; Cover and
Thomas, 1991) states that if the language is regular in certain ways (to be exact, if it is
both stationary and ergodic),

H(L) = lim
n→∞

−1
n

logp(w1w2 . . .wn)(4.60)

That is, we can take a single sequence that is long enough instead of summing
over all possible sequences. The intuition of the Shannon-McMillan-Breiman theorem
is that a long enough sequence of words will contain in it manyother shorter sequences,
and that each of these shorter sequences will reoccur in the longer sequence according
to their probabilities.

A stochastic process is said to bestationary if the probabilities it assigns to aSTATIONARY

sequence are invariant with respect to shifts in the time index. In other words, the
probability distribution for words at timet is the same as the probability distribution
at time t + 1. Markov models, and henceN-grams, are stationary. For example, in
a bigram,Pi is dependent only onPi−1. So if we shift our time index byx, Pi+x is
still dependent onPi+x−1. But natural language is not stationary, since as we will
see in Ch. 11, the probability of upcoming words can be dependent on events that
were arbitrarily distant and time dependent. Thus our statistical models only give an
approximation to the correct distributions and entropies of natural language.

To summarize, by making some incorrect but convenient simplifying assump-
tions, we can compute the entropy of some stochastic processby taking a very long
sample of the output, and computing its average log probability. In the next section we
talk about the why and how;whywe would want to do this (i.e., for what kinds of prob-
lems would the entropy tell us something useful), andhow to compute the probability
of a very long sequence.

4.10.1 Cross Entropy for Comparing Models

In this section we introduce thecross entropy, and discuss its usefulness in comparingCROSS ENTROPY

different probabilistic models. The cross entropy is useful when we don’t know the

DRAFT

Section 4.10. Advanced: Information Theory Background 35

actual probability distributionp that generated some data. It allows us to use somem,
which is a model ofp (i.e., an approximation top. The cross-entropy ofm on p is
defined by:

H(p,m) = lim
n→∞

1
n

∑

W∈L

p(w1, . . . ,wn) logm(w1, . . . ,wn)(4.61)

That is we draw sequences according to the probability distribution p, but sum
the log of their probability according tom.

Again, following the Shannon-McMillan-Breiman theorem, for a stationary er-
godic process:

H(p,m) = lim
n→∞

−1
n

logm(w1w2 . . .wn)(4.62)

This means that, as for entropy, we can estimate the cross-entropy of a model
m on some distributionp by taking a single sequence that is long enough instead of
summing over all possible sequences.

What makes the cross entropy useful is that the cross entropyH(p,m) is an upper
bound on the entropyH(p). For any modelm:

H(p) ≤ H(p,m)(4.63)

This means that we can use some simplified modelm to help estimate the true
entropy of a sequence of symbols drawn according to probability p. The more accurate
m is, the closer the cross entropyH(p,m) will be to the true entropyH(p). Thus
the difference betweenH(p,m) andH(p) is a measure of how accurate a model is.
Between two modelsm1 andm2, the more accurate model will be the one with the
lower cross-entropy. (The cross-entropy can never be lowerthan the true entropy, so a
model cannot err by underestimating the true entropy).

We are finally ready to see the relation between perplexity and the cross-entropy
we saw in Equation (4.62). Cross-entropy is defined in the limit, as the length of the
observed word sequence goes to infinity. We will need an approximation to cross-
entropy, relying on a (sufficiently long) sequence of fixed length. This approximation
to the cross-entropy of a modelM = P(wi |wi−N+1...wi−1) on a sequence of wordsW
is:

H(W) = − 1
N

logP(w1w2 . . .wN)(4.64)

Theperplexity of a modelP on a sequence of wordsW is now formally defined as thePERPLEXITY

exp of this cross-entropy:

Perplexity(W) = 2H(W)

= P(w1w2 . . .wN)−
1
N

= N

√

1
P(w1w2 . . .wN)

DRAFT

36 Chapter 4. N-grams

= N

√

√

√

√

N
∏

i=1

1
P(wi |w1 . . .wi−1)

(4.65)

4.11 ADVANCED: THE ENTROPY OFENGLISH AND ENTROPY RATE

CONSTANCY

As we suggested in the previous section, the cross-entropy of some modelm can be
used as an upper bound on the true entropy of some process. We can use this method to
get an estimate of the true entropy of English. Why should we care about the entropy
of English?

One reason is that the true entropy of English would give us a solid lower bound
for all of our future experiments on probabilistic grammars. Another is that we can use
the entropy values for English to help understand what partsof a language provide the
most information (for example, is the predictability of English mainly based on word
order, on semantics, on morphology, on constituency, or on pragmatic cues?) This can
help us immensely in knowing where to focus our language-modeling efforts.

There are two common methods for computing the entropy of English. The first
was employed by Shannon (1951), as part of his groundbreaking work in defining the
field of information theory. His idea was to use human subjects, and to construct a psy-
chological experiment that requires them to guess strings of letters; by looking at how
many guesses it takes them to guess letters correctly we can estimate the probability of
the letters, and hence the entropy of the sequence.

The actual experiment is designed as follows: we present a subject with some
English text and ask the subject to guess the next letter. Thesubjects will use their
knowledge of the language to guess the most probable letter first, the next most proba-
ble next, and so on. We record the number of guesses it takes for the subject to guess
correctly. Shannon’s insight was that the entropy of the number-of-guesses sequence is
the same as the entropy of English. (The intuition is that given the number-of-guesses
sequence, we could reconstruct the original text by choosing the “nth most probable”
letter whenever the subject tookn guesses). This methodology requires the use of letter
guesses rather than word guesses (since the subject sometimes has to do an exhaustive
search of all the possible letters!), and so Shannon computed theper-letter entropy
of English rather than the per-word entropy. He reported an entropy of 1.3 bits (for 27
characters (26 letters plus space)). Shannon’s estimate islikely to be too low, since it
is based on a single text (Jefferson the Virginianby Dumas Malone). Shannon notes
that his subjects had worse guesses (hence higher entropies) on other texts (newspaper
writing, scientific work, and poetry). More recently variations on the Shannon experi-
ments include the use of a gambling paradigm where the subjects get to bet on the next
letter (Cover and King, 1978; Cover and Thomas, 1991).

The second method for computing the entropy of English helpsavoid the single-
text problem that confounds Shannon’s results. This methodis to take a very good
stochastic model, train it on a very large corpus, and use it to assign a log-probability
to a very long sequence of English, using the Shannon-McMillan-Breiman theorem:

DRAFT

Section 4.11. Advanced: The Entropy of English and Entropy Rate Constancy 37

H(English) ≤ lim
n→∞

−1
n

logm(w1w2 . . .wn)(4.66)

For example, Brown et al. (1992a) trained a trigram languagemodel on 583 mil-
lion words of English, (293,181 different types) and used itto compute the probability
of the entire Brown corpus (1,014,312 tokens). The trainingdata include newspapers,
encyclopedias, novels, office correspondence, proceedings of the Canadian parliament,
and other miscellaneous sources.

They then computed the character-entropy of the Brown corpus, by using their
word-trigram grammar to assign probabilities to the Brown corpus, considered as a
sequence of individual letters. They obtained an entropy of1.75 bits per character
(where the set of characters included all the 95 printable ASCII characters).

The average length of English written words (including space) has been reported
at 5.5 letters (Nádas, 1984). If this is correct, it means that the Shannon estimate of
1.3 bits per letter corresponds to a per-word perplexity of 142 for general English. The
numbers we report earlier for the WSJ experiments are significantly lower than this,
since the training and test set came from the same subsample of English. That is, those
experiments underestimate the complexity of English (since the Wall Street Journal
looks very little like Shakespeare, for example)

A number of scholars have independently made the intriguingsuggestion that en-
tropy rate plays a role in human communication in general (Lindblom, 1990; Van Son
et al., 1998; Aylett, 1999; Genzel and Charniak, 2002; Van Son and Pols, 2003). The
idea is that people speak so as to keep the rate of informationbeing transmitted per
second roughly constant, i.e. transmitting a constant number of bits per second, or
maintaining a constant entropy rate. Since the most efficient way of transmitting in-
formation through a channel is at a constant rate, language may even have evolved
for such communicative efficiency (Plotkin and Nowak, 2000). There is a wide vari-
ety of evidence for the constant entropy rate hypothesis. One class of evidence, for
speech, shows that speakers shorten predictable words (i.e. they take less time to say
predictable words is shorter) and lengthen unpredictable words (Aylett, 1999; Jurafsky
et al., 2001; Aylett and Turk, 2004). In another line of research, Genzel and Charniak
(2002, 2003) show that entropy rate constancy makes predictions about the entropy of
individual sentences from a text. In particular, they show that it predicts that local mea-
sures of sentence entropy which ignore previous discourse context (for example the
N-gram probability of sentence), should increase with the sentence number, and they
document this increase in corpora. Keller (2004) provides evidence that entropy rate
plays a role for the addressee as well, showing a correlationbetween the entropy of a
sentence and the processing effort it causes in comprehension, as measured by reading
times in eye-tracking data.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The underlying mathematics of theN-gram was first proposed by Markov (1913), who
used what are now calledMarkov chains (bigrams and trigrams) to predict whether an

DRAFT

38 Chapter 4. N-grams

upcoming letter in Pushkin’sEugene Oneginwould be a vowel or a consonant. Markov
classified 20,000 letters as V or C and computed the bigram andtrigram probability that
a given letter would be a vowel given the previous one or two letters. Shannon (1948)
appliedN-grams to compute approximations to English word sequences. Based on
Shannon’s work, Markov models were commonly used in engineering, linguistic, and
psychological work on modeling word sequences by the 1950s.

In a series of extremely influential papers starting with Chomsky (1956) and in-
cluding Chomsky (1957) and Miller and Chomsky (1963), Noam Chomsky argued that
“finite-state Markov processes”, while a possibly useful engineering heuristic, were in-
capable of being a complete cognitive model of human grammatical knowledge. These
arguments led many linguists and computational linguists to ignore work in statistical
modeling for decades.

The resurgence ofN-gram models came from Jelinek, Mercer, Bahl, and col-
leagues at the IBM Thomas J. Watson Research Center, influenced by Shannon, and
Baker at CMU, influenced by the work of Baum and colleagues. These two labs in-
dependently successfully usedN-grams in their speech recognition systems (Baker,
1990; Jelinek, 1976; Baker, 1975; Bahl et al., 1983; Jelinek, 1990). A trigram model
was used in the IBM TANGORA speech recognition system in the 1970s, but the idea
was not written up until later.

Add-one smoothing derives from Laplace’s 1812 law of succession, and was first
applied as an engineering solution to the zero-frequency problem by Jeffreys (1948)
based on an earlier Add-K suggestion by ? (?). Problems with the Add-one algorithm
are summarized in Gale and Church (1994). The Good-Turing algorithm was first ap-
plied to the smoothing ofN-gram grammars at IBM by Katz, as cited in Nádas (1984).
Church and Gale (1991) gives a good description of the Good-Turing method, as well
as the proof.Sampson (1996) also has a useful discussion of Good-Turing. Jelinek
(1990) summarizes this and many other early language model innovations used in the
IBM language models.

A wide variety of different language modeling and smoothingtechniques were
tested through the 1980’s and 1990’s, including those we discuss as well as Witten-Bell
discounting (Witten and Bell, 1991), varieties of class-based models (Jelinek, 1990;
Kneser and Ney, 1993; Heeman, 1999; Samuelsson and Reichl, 1999), and others
(Gupta et al., 1992). In the late 1990’s, Chen and Goodman produced a very influential
series of papers with a comparison of different language models (Chen and Goodman,
1996, 1998, 1999; Goodman, 2006). They performed a number ofcarefully controlled
experiments comparing different discounting algorithms,cache models, class-based
(cluster) models, and other language model parameters. They showed the advantages
of Interpolated Kneser-Ney, which has since become one of the most popular current
methods for language modeling. These papers influenced our discussion in this chapter,
and are recommended reading if you have further interest in language modeling.

As we suggested earlier in the chapter, recent research in language modeling has
focused on adaptation, and also on the use of sophisticated linguistic structures based
on syntactic and dialogue structure.

