32 Chapter 4. N-grams

1996; Niesler and Woodland, 1996).

In general, using very large and rich contexts can resuleiy large language
models. Thus these models are often pruned, removing lobgly events. Prun-
ing is also essential for using language models on smalfigotat such as cellphones
(Stolcke, 1998).

Finally, there is a wide body of research on integrating sijmated linguistic
structures into language modeling. Language models bassghtactic structure from
probabilistic parsers are described in Ch. 14. Languagesiadzased on the current
speech act in dialogue are described in Ch. 23.

4.10 ADVANCED: INFORMATION THEORY BACKGROUND

| got the horse right here
Frank Loesser, Guys and Dolls

We introduced perplexity in Sec. 4.4 as a way to evalllagram models on a
test set. A betteN-gram model is one which assigns a higher probability to &se t
data, and perplexity is a normalized version of the prolitgtif the test set. Another
way to think about perplexity is based on the informatioeettetic concept ofross-
entropy. In order to give another intuition into perplexity as a netthis section gives
a quick review of fundamental facts fromformation theory including the concept
of cross-entropy that underlies perplexity. The inter@séader should consult a good
information theory textbook like Cover and Thomas (1991).

Perplexity is based on the information-theoretic notiorrass-entropy, which

exrory  we will now work toward defining.Entropy is a measure of information, and is in-
valuable throughout speech and language processing. bearsed as a metric for
how much information there is in a particular grammar, fowheell a given grammar
matches a given language, for how predictive a giMegram grammar is about what
the next word could be. Given two grammars and a corpus, weusarentropy to
tell us which grammar better matches the corpus. We can alsentropy to compare
how difficult two speech recognition tasks are, and also tasuee how well a given
probabilistic grammar matches human grammars.

Computing entropy requires that we establish a random arda that ranges
over whatever we are predicting (words, letters, parts eésh, the set of which we'll
call x), and that has a particular probability function, calpik). The entropy of this
random variabl& is then

(4.54) H(X)=->p(x)log, p(x)

XEX

The log can in principle be computed in any base; if we use lagpl?, the
resulting value of entropy will be measuredits.

The most intuitive way to define entropy for computer scistis to think of
the entropy as a lower bound on the number of bits it would talkencode a certain
decision or piece of information in the optimal coding sclkkem
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(4.55)

(4.56)

(4.57)

Cover and Thomas (1991) suggest the following example. imesthat we want
to place a bet on a horse race but it is too far to go all the waptikers Racetrack,
and we'd like to send a short message to the bookie to tell Hiiclwhorse to bet on.
Suppose there are eight horses in this particular race.

One way to encode this message is just to use the binary espia¢ion of the
horse’'s number as the code; thus horse 1 woul@®E, horse 2010, horse 3011,
and so on, with horse 8 coded @80. If we spend the whole day betting, and each
horse is coded with 3 bits, on the average we would be sendiitg Ber race.

Can we do better? Suppose that the spread is the actuabdigiri of the bets
placed, and that we represent it as the prior probabilityachenorse as follows:

Horse 5 &

Horse 1 3 2

Horse 2 % Horse 6 g
Horse 3  |Horse 7 &
Horse 4 | Horse 8 &

The entropy of the random variab¥that ranges over horses gives us a lower
bound on the number of bits, and is:

i=8
H(X) = =) p(i)logp(i)
i=1

— 1ol liogl_liogl_1 1 1 1
= —3logs—zlogz—3logg—1510075—4(ga109¢5)

= 2 bits

A code that averages 2 bits per race can be built by using eheordings for
more probable horses, and longer encodings for less pebabtes. For example, we
could encode the most likely horse with the c&deand the remaining horses 48,
then110,1110,111100,111101,111110,and111111.

What if the horses are equally likely? We saw above that if we an equal-
length binary code for the horse numbers, each horse toots3dcode, and so the
average was 3. Is the entropy the same? In this case eachwmarskhave a probability
of %. The entropy of the choice of horses is then:

i=8
H(X) = —Z:—élog:—é = —Iog:—é = 3 bits
i=1

Until now we have been computing the entropy of a single tdeiaBut most of
what we will use entropy for involvesequencegor a grammar, for example, we will
be computing the entropy of some sequence of wa@vds {wp, w1, Wy, ..., W, }. One
way to do this is to have a variable that ranges over sequerfieesrds. For example
we can compute the entropy of a random variable that rangeasadivfinite sequences
of words of lengtim in some languagk as follows:

H(Wi,Wa,...,Wh) = — Y p(W{")log p(Wy)
wWeL
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ENTROPY RATE

(4.58)

(4.59)

(4.60)

STATIONARY

CROSS ENTROPY

We could define thentropy rate (we could also think of this as thger-word
entropy) as the entropy of this sequence divided by the number of svord

1 1
SHWD) =—= > p(W)log p(W)
WieL

But to measure the true entropy of a language, we need todmmsequences
of infinite length. If we think of a language as a stochastimcpsd. that produces a
sequence of words, its entropy r&téL) is defined as:

1
_r!moﬁH(le\NZa"'an)

1
—lim =
n—oo N

H(L)

> p(wi,..., W) logp(wa, ..., Wh)
Wel

The Shannon-McMillan-Breiman theorem (Algoet and CoveB8; Cover and
Thomas, 1991) states that if the language is regular inioesays (to be exact, if it is
both stationary and ergodic),

. 1
H (L) — r!mo_ﬁ log p(W1W2 S .Wn)

That is, we can take a single sequence that is long enougdaihstf summing
over all possible sequences. The intuition of the ShanneMifan-Breiman theorem
is that a long enough sequence of words will contain in it mathgr shorter sequences,
and that each of these shorter sequences will reoccur itiget sequence according
to their probabilities.

A stochastic process is said to btionary if the probabilities it assigns to a
sequence are invariant with respect to shifts in the timexndn other words, the
probability distribution for words at timeis the same as the probability distribution
at timet + 1. Markov models, and hendé-grams, are stationary. For example, in
a bigram,P, is dependent only o _;. So if we shift our time index by, P is
still dependent orP._1. But natural language is not stationary, since as we will
see in Ch. 11, the probability of upcoming words can be depeindn events that
were arbitrarily distant and time dependent. Thus oursttesil models only give an
approximation to the correct distributions and entropifasadural language.

To summarize, by making some incorrect but convenient sfyipd assump-
tions, we can compute the entropy of some stochastic prdmetsking a very long
sample of the output, and computing its average log proibahlih the next section we
talk about the why and howyhywe would want to do this (i.e., for what kinds of prob-
lems would the entropy tell us something useful), &pevto compute the probability
of a very long sequence.

4.10.1 Cross Entropy for Comparing Models

In this section we introduce thegoss entropy; and discuss its usefulness in comparing
different probabilistic models. The cross entropy is ukefiien we don’t know the
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(4.61)

(4.62)

(4.63)

(4.64)

PERPLEXITY

actual probability distributiomp that generated some data. It allows us to use some
which is a model ofp (i.e., an approximation t@. The cross-entropy ahon p is
defined by:

o1
H(p,m) = lim nwze%p(wl,... Wn) logm(wi, ..., Wn)
That is we draw sequences according to the probabilityibigton p, but sum
the log of their probability according tm.
Again, following the Shannon-McMillan-Breiman theoreror & stationary er-
godic process:

H(p,m) = r!imo—%logm(wlwz...Wn)

This means that, as for entropy, we can estimate the crasspgrof a model
m on some distributiorp by taking a single sequence that is long enough instead of
summing over all possible sequences.

What makes the cross entropy useful is that the cross enitt¢pym) is an upper
bound on the entroph (p). For any modei:

H(p) <H(p,m)

This means that we can use some simplified mod& help estimate the true
entropy of a sequence of symbols drawn according to prabapil The more accurate
m is, the closer the cross entropi(p,m) will be to the true entropyH(p). Thus
the difference betweeH (p,m) andH(p) is a measure of how accurate a model is.
Between two modelsy and mp, the more accurate model will be the one with the
lower cross-entropy. (The cross-entropy can never be ltvear the true entropy, so a
model cannot err by underestimating the true entropy).

We are finally ready to see the relation between perplexitytha cross-entropy
we saw in Equation (4.62). Cross-entropy is defined in thé,lias the length of the
observed word sequence goes to infinity. We will need an aqupiadion to cross-
entropy, relying on a (sufficiently long) sequence of fixedgih. This approximation
to the cross-entropy of a model = P(wi|wi_n+1..-Wi—1) on a sequence of wordy
is:

1
HW) = N logP(wiwa... W)

Theperplexity of a modelP on a sequence of wordfg is now formally defined as the
exp of this cross-entropy:

SH(W)

PerplexityW)

Zl-

= P(W1W2...WN)_

P(W1W2 e WN)
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N 1
_ N -
(4.65) o Hl P(wi|wy ... wi—1)

4.11 ADVANCED: THEENTROPY OFENGLISH AND ENTROPY RATE
CONSTANCY

As we suggested in the previous section, the cross-entrbpgme modein can be
used as an upper bound on the true entropy of some procesanse this method to
get an estimate of the true entropy of English. Why should are about the entropy
of English?

One reason is that the true entropy of English would give wdid Bwer bound
for all of our future experiments on probabilistic grammakaother is that we can use
the entropy values for English to help understand what pdrdsanguage provide the
most information (for example, is the predictability of His mainly based on word
order, on semantics, on morphology, on constituency, oragrpatic cues?) This can
help us immensely in knowing where to focus our language etiog efforts.

There are two common methods for computing the entropy ofistmdr he first
was employed by Shannon (1951), as part of his groundbrgaldnk in defining the
field of information theory. His idea was to use human subjeatd to construct a psy-
chological experiment that requires them to guess strifiggtters; by looking at how
many guesses it takes them to guess letters correctly westiamage the probability of
the letters, and hence the entropy of the sequence.

The actual experiment is designed as follows: we presenbgaiwith some
English text and ask the subject to guess the next letter. stibgcts will use their
knowledge of the language to guess the most probable letertfie next most proba-
ble next, and so on. We record the number of guesses it tak#fsefeubject to guess
correctly. Shannon’s insight was that the entropy of the Ibemof-guesses sequence is
the same as the entropy of English. (The intuition is thag¢igithe number-of-guesses
sequence, we could reconstruct the original text by chgasia ‘nth most probable”
letter whenever the subject toalguesses). This methodology requires the use of letter
guesses rather than word guesses (since the subject s@sé@s to do an exhaustive
search of all the possible letters!), and so Shannon cordgh&per-letter entropy
of English rather than the per-word entropy. He reportedraropy of 1.3 bits (for 27
characters (26 letters plus space)). Shannon’s estimékeli to be too low, since it
is based on a single texidfferson the Virginiathy Dumas Malone). Shannon notes
that his subjects had worse guesses (hence higher eniropiether texts (newspaper
writing, scientific work, and poetry). More recently vaigats on the Shannon experi-
ments include the use of a gambling paradigm where the dglyjetto bet on the next
letter (Cover and King, 1978; Cover and Thomas, 1991).

The second method for computing the entropy of English helpsd the single-
text problem that confounds Shannon’s results. This metbhad take a very good
stochastic model, train it on a very large corpus, and useassign a log-probability
to a very long sequence of English, using the Shannon-MantiBreiman theorem:
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(4.66) H(English < rLim —% logm(wiwa. .. W)

For example, Brown et al. (1992a) trained a trigram languagéel on 583 mil-
lion words of English, (293,181 different types) and usdd itompute the probability
of the entire Brown corpus (1,014,312 tokens). The traimiata include newspapers,
encyclopedias, novels, office correspondence, procegdirthe Canadian parliament,
and other miscellaneous sources.

They then computed the character-entropy of the Brown cripy using their
word-trigram grammar to assign probabilities to the Browanpcis, considered as a
sequence of individual letters. They obtained an entrop%. 85 bits per character
(where the set of characters included all the 95 printablE&haracters).

The average length of English written words (including €)d@as been reported
at 5.5 letters (Nadas, 1984). If this is correct, it mears the Shannon estimate of
1.3 bits per letter corresponds to a per-word perplexityd® fbr general English. The
numbers we report earlier for the WSJ experiments are Signifiy lower than this,
since the training and test set came from the same subsafipiglish. That is, those
experiments underestimate the complexity of English ésithe Wall Street Journal
looks very little like Shakespeare, for example)

A number of scholars have independently made the intrigsurggestion that en-
tropy rate plays a role in human communication in generaidhlom, 1990; Van Son
et al., 1998; Aylett, 1999; Genzel and Charniak, 2002; Van &ud Pols, 2003). The
idea is that people speak so as to keep the rate of informb&omg transmitted per
second roughly constant, i.e. transmitting a constant rurob bits per second, or
maintaining a constant entropy rate. Since the most effisigy of transmitting in-
formation through a channel is at a constant rate, languaeewen have evolved
for such communicative efficiency (Plotkin and Nowak, 2000here is a wide vari-
ety of evidence for the constant entropy rate hypothesise €ass of evidence, for
speech, shows that speakers shorten predictable wordsh@gtake less time to say
predictable words is shorter) and lengthen unpredictablelsv(Aylett, 1999; Jurafsky
et al., 2001; Aylett and Turk, 2004). In another line of reseaGenzel and Charniak
(2002, 2003) show that entropy rate constancy makes preacabout the entropy of
individual sentences from a text. In particular, they shioat ft predicts that local mea-
sures of sentence entropy which ignore previous discowstext (for example the
N-gram probability of sentence), should increase with theesee number, and they
document this increase in corpora. Keller (2004) providédemnce that entropy rate
plays a role for the addressee as well, showing a correlagbmeen the entropy of a
sentence and the processing effort it causes in compreimeas measured by reading
times in eye-tracking data.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The underlying mathematics of tiNegram was first proposed by Markov (1913), who
used what are now callédarkov chains (bigrams and trigrams) to predict whether an
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upcoming letter in PushkinBugene Onegiwould be a vowel or a consonant. Markov
classified 20,000 letters as V or C and computed the bigrarntrigmdm probability that

a given letter would be a vowel given the previous one or twiete. Shannon (1948)
appliedN-grams to compute approximations to English word sequenBased on
Shannon’s work, Markov models were commonly used in engingglinguistic, and
psychological work on modeling word sequences by the 1950s.

In a series of extremely influential papers starting with @Bky (1956) and in-
cluding Chomsky (1957) and Miller and Chomsky (1963), Noamo@sky argued that
“finite-state Markov processes”, while a possibly usefuierering heuristic, were in-
capable of being a complete cognitive model of human gramai&nowledge. These
arguments led many linguists and computational lingusignore work in statistical
modeling for decades.

The resurgence dfl-gram models came from Jelinek, Mercer, Bahl, and col-
leagues at the IBM Thomas J. Watson Research Center, infddncShannon, and
Baker at CMU, influenced by the work of Baum and colleagueseséhwo labs in-
dependently successfully uséigrams in their speech recognition systems (Baker,
1990; Jelinek, 1976; Baker, 1975; Bahl et al., 1983; Jelid®90). A trigram model
was used in the IBM TANGORA speech recognition system in $i&0%, but the idea
was not written up until later.

Add-one smoothing derives from Laplace’s 1812 law of susioes and was first
applied as an engineering solution to the zero-frequenalglem by Jeffreys (1948)
based on an earlier Add-K suggestion by ? (?). Problems wétAtld-one algorithm
are summarized in Gale and Church (1994). The Good-Turopgridhm was first ap-
plied to the smoothing dil-gram grammars at IBM by Katz, as cited in Nadas (1984).
Church and Gale (1991) gives a good description of the Gag@d method, as well
as the proof.Sampson (1996) also has a useful discussiomad-Guring. Jelinek
(1990) summarizes this and many other early language modeVations used in the
IBM language models.

A wide variety of different language modeling and smoothiechniques were
tested through the 1980’s and 1990’s, including those waudisas well as Witten-Bell
discounting (Witten and Bell, 1991), varieties of classdzhmodels (Jelinek, 1990;
Kneser and Ney, 1993; Heeman, 1999; Samuelsson and Ref%®),1and others
(Gupta et al., 1992). In the late 1990’s, Chen and Goodmaaiumed a very influential
series of papers with a comparison of different languageatsq@hen and Goodman,
1996, 1998, 1999; Goodman, 2006). They performed a numbzarefully controlled
experiments comparing different discounting algorithiweche models, class-based
(cluster) models, and other language model parameters; Sitmved the advantages
of Interpolated Kneser-Ney, which has since become oneeofrtbst popular current
methods for language modeling. These papers influencedsmussion in this chapter,
and are recommended reading if you have further intereanigdage modeling.

As we suggested earlier in the chapter, recent researchgudge modeling has
focused on adaptation, and also on the use of sophistidatpddtic structures based
on syntactic and dialogue structure.





