Hyopil Shin (Graduate School of Data Science and Dept. of Linguistics, Seoul National University)
hpshin@snu.ac.kr
https://sites.google.com/snu.ac.kr/gsds-nlp/home
http://knlp.snu.ac.kr/
Tue/Thur 3:30 to
4:45 in building 942 room 302
T.A:
이상아(visualjan@snu.ac.kr)
( Photo by Arseny Togulev on Unsplash)
현재 자연언어처리분야에서 Game
Changer가 된 Transformer를 중심으로 이를 활용한 여러 응용분야들을 살펴보도록 한다.
Transformer의 이론적 고찰에서부터 시작하여 Huggingface의 Transformers에서
제공하는 architecture들을 살펴보고 이 중 중요한 모델들에 대해서 집중적으로 학습한다. 이를
바탕으로 Transformer를 활용한 Sentence Bert, Question Answering,
Search, Chatbot, Multimodal, Text
Classification/Summarization 등을 살펴보도록 한다. 수강생들은 강의에서 제공되는
주제들을 선택하여 관련 페이퍼와 자료들을 공부하여 발표하고 최종적으로 이를 활용한 시스템의 구현이나
학회에 발표할 수 있는 논문을 작성할 수 있도록 한다. 이 강의를 수강하기 위해서는 텍스트 및 자연어 빅데이터
분석방법론/컴퓨터언어학연구 I 등을 수강하였거나 관련 내용을 숙지하고 있어야 한다. Python,
Pytorch 등이 기본적으로 요구된다. 이 과목은 데이터사이언스의 자연어처리의 응용 과목과 언어학과의
컴퓨터언어학연구 II의 Cross-listing 과목이다.
Date | Topics | Related Materials and
Resources |
Repositories |
|
1 | 3/2 & 3/4 |
Introduction to
Class Encoder-Decoder Review Attention Model |
Transformer-based
Encoder-Decoder Models Attention: Illustrated Attention |
PyTorch:
|
2 | 3/9 & 3/11 | Introduction
to Transformer
BERT (Bidirectional Encoder Representations from Transformers) |
BERT Fine Tuning BERT Fine-Tuning Tutorial with PyTorch BERT Word Embeddings Transformers Explained Visually(Part 1): Overview of Functionality Transformers Explained Visually(Part 2): How it works, step-by-step Transformers Explained Visually(Part3): Multi-head Attention, deep dive Master Positional Encoding: Part I Rethinking Attention with Performers From Transformers to Performers: Approximating Attention SWITCH TRANSFORMERS: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity Google Switch Transformers: Scaling to Trillion Parameter Models with Constant Computational Costs |
PyTorch: The Annotated Transformer |
3 | 3/16 & 3/18 | Introduction to
Huggingface Transformers
Some Models for Long Sequences |
Transformers by Huggingface and Full Documentation |
|
4 | 3/23 & 3/25 | Introduction
to Huggingface Transformers |
Huggingface
Transformers Notebooks Fine Tuning BERT for Text Classification with FARM |
|
5 | 3/30 & 4/1 | Sentence Embedding
with Transformers |
Sentence-BERT:
Sentence Embeddings using Siamese-Networks |
GitHub - adsieg/text_similarity: Text Similarity |
6 | 4/6 & 4/8 |
Sentence Embedding with Transformers | Making
Monolingual Sentence Embeddings Multilingual
using Knowledge Distillation LaBSE:Language-Agnostic BERT Sentence Embeddings by Google AI Billion-scale Semantic Similarity Search with FAISS+SBERT How to Build Semantic Search with Transformers and FAISS |
Facebook Faiss : Library for efficient similarity search and clustering of dense vectors. |
7 | 4/13 & 4/15 | Search with Transformers |
|
|
8 | 4/20 & 4/22 | Search with Transformers | Introducing
txtai, an AI-Powered search engine on
Transformers
Deep Learning for Semantic Text Matching |
txtai tldrstroy |
9 |
4/27 & 4/29 | Text Classification /Generation with Transformers | Siamese and Dual
BERT for Multi Text Classification GPT2 for Text Classification using Huggingface Transformers |
|
10 | 5/4 & 5/6 | Text Classification /Generation with Transformers | Build a
Bidirectional Text Generation Using Pytorch Text Generation in Any Language with GPT-2 |
|
11 | 5/11
& 5/13 |
Summarization with Transformers | TLDR!!
Summarize Articles and Content With NLP PEGASUS: Google's State of the Art Abstractive Summarization Model Fine Tuning a T5 Transformer for Any Summarization Task |
PEGASUS:
Pre-training with Extracted Gap-sentences for
Abstractive Summarization by Zhang et al. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension by Lewis et al. Language Models are Unsupervised Multitask Learners by Radford et al. Discourse-Aware Neural Extractive Text Summarization |
12 | 5/18 & 5/20 | Multimodal Transformers TAPAS |
Transformers with
Tabular Data: How to Incorporate Tabular Data
with Huggingface Transformers Google Unveils TAPAS, a BERT-based Neural Network for Querying Tables Using Natural Language Google TAPAS is a BERT-based Model to Query Tabular Data Using Neural Language |
Multimodal
Transformers | Transformers with Tabular Data Weakly Supervised Table Parsing via Pre-training by Herzig et al. |
13 | 5/25 & 5/27 | QA with Transformers |
BERT-based
Cross-Lingual Question Answering with DeepPavlov How to Finetune mT5 to Create a Question Generator(for 100_Languages) Build an Open-Domain Question-Answering System With BERT in 3 Lines of Code Sentence2MCQ using BERT Word Sense Disambiguation and T5 Transformer |
Haystack: Neural Question Answering at Scale |
14 | 6/1 & 6/3 | Chatbot with Transformers | Chatbots
Were the Next Big Thing: What Happened? - The
Startup Chatbots are Cool! A Framework Using Python Let's Build an Intelligent Chatbot Make Your Own Rick Sanchez (bot) with Transformers and DialoGPT Fine-Tuining Blenderbot- Part 1: The Data Blenderbot - part 2: The Transformer |
Recipes for Building an Open-domain Chatbot by Roller et al. |
15 | 6/8 & 6/10 | Final Presentations |