Hyopil Shin (Graduate School of Data Science and Dept. of Linguistics, Seoul National University)
hpshin@snu.ac.kr
https://sites.google.com/snu.ac.kr/gsds-nlp/home
http://knlp.snu.ac.kr/
Tue/Thur 3:30
to 4:45 in building 942 room 302
T.A: 김석기
(blaqdraq77@snu.ac.kr)
(http://www.theverge.com/2016/3/11/11208078/lee-se-dol-go-google-kasparov-jennings-ai)
이 과목에서는
자연언어처리(Natural Language Processing) 또는
컴퓨터언어학(Computational Linguistics)의 이론적인 기초에서부터 최근의
Transformers, BERT 기반의 방법론을 학습한다. 강의 전반부에서는 정규표현,
N-gram, Entropy, Embedding에 관한 내용이 다루어지며 후반부에는 Regression과
딥러닝, Encoder-Decoder, Attention 개념들의 리뷰를 하고 Huggingface의
Transformers의 사전학습모델과 모듈을 사용하여 자연언어처리에 활용하는 다양한 태스크를 실제
구현해 보도록 한다. 프로그래밍으로 Pytorch가 다루어지며 모든 과제는 토치를 기반으로 구현하도록
한다. 파이선 및 딥러닝 기본 지식이 요구된다. 이 수업을 통해 자연언어처리의 기본개념에서부터 최근의
방법론까지 학습하여 실제 언어처리에 활용할 수 있는 능력을 키우도록 한다.
Date | Topics | Related Materials and
Resources |
PyTorch |
|
1 | 9/2 & 9/7 |
Introduction to Natural Language Processing
Regular Expressions, Text Normalization and
Edit Distance |
Natural
Language Processing is Fun! Regular Expressions, Text Normalization and Edit Distance |
PyTorch: |
2 | 9/9 & 9/14 | Regular Expressions, Text
Normalization and Edit Distance Language Modeling and with N-Grams |
Language Modeling and with N-Grams | |
3 | 9/16 & 9/21 | Language Modeling and with
N-Grams Entropy and Maximum Entropy Models |
Entropy
is a Measure of Uncertainty |
|
4 | 9/23 & 9/28 | Text Classification
|
Text Classification |
PyTorch: Linear Regression With PyTorch Logistic Regression With PyTorch |
5 | 9/30 | Vector Semantics and
Embeddings |
Vector Semantics
and Embeddings |
PyTorch:
|
6 | 10/5 & 10/7 |
Vector Semantics and Embeddings | Vector Semantics
and Embeddings |
PyTorch: Sentiment Analysis (IMDB) |
7 | 10/12 & 10/14 |
Sequence to Sequence
Model: Encoder-Decoder
|
PyTorch:
|
|
8 | 10/19 & 10/21 |
Sequence to Sequence
Model: Encoder-Decoder Attention Model Neural Machine Translation By Jointly Learning to Align and Translate |
PyTorch:
|
|
9 |
10/26 & 10/28 | Transformer Self Attention: Attention is All you need The Illustrated Transformer |
|
PyTorch: |
10 |
11/2 & 11/4 |
BERT
(Bidirectional Encoder Representations
from Transformers)
|
BERT Fine Tuning BERT Fine-Tuning Tutorial with PyTorch BERT Word Embeddings Transformers by Huggingface and Full Documentation |
|
11 | 11/9 & 11/11 | Transformers
by Huggingface: Quick Tour Summary of Tasks : Sequence Classification, Extractive Question Answering, Language Modeling, Text Generation, Named Entity Recognition, Sumarization, and Translation |
Transformers
by Huggingface and Full Documentation
|
|
12 | 11/16 & 11/18 | Sentence Embedding
With Transformers |
Sentence-BERT: Sentence Embeddings using
Siamese-Networks |
|
13 | 11/23 & 11/25 | Transformer-based
Applications Semantic Search with Transformers
Similarity
Search with FAISS Question-Answering
with Transformers |
|
Group Projects and Presentations |
14 | 11/30 & 12/2 | Transformers by Huggingface
For Korean Naver Sentiment Movie Corpus KorNLI KorQuAD KoreanNERCorpus Naver NLP Challenge NER NLP Challenge SRL |
|
Group Projects and Presentations |
15 | 12/7 & 12/9 | Final Test and Project Presentations |